The expression pattern of a rice disease resistance gene xa3/xa26 is differentially regulated by the genetic backgrounds and developmental stages that influence its function.
نویسندگان
چکیده
Genetic background and developmental stage influence the function of some disease resistance (R) genes. The molecular mechanisms of these modifications remain elusive. Our results show that the two factors are associated with the expression of the R gene in rice Xa3 (also known as Xa26)-mediated resistance to Xanthomonas oryzae pv. oryzae (Xoo), which in turn influences the expression of defense-responsive genes. The background of japonica rice, one of the two major subspecies of Asian cultivated rice, facilitates the function of Xa3 more than the background of indica rice, another rice subspecies. Xa3 expression gradually increases from early seedling stage to adult stage. Japonica plants carrying Xa3 regulated by the native promoter showed an enlarged resistance spectrum (i.e., resistance to more Xoo races), an increased resistance level (i.e., further reduced lesion length), and whole-growth-stage resistance compared to the indica rice; this enhanced resistance was associated with an increased expression of Xa3 throughout the growth stages in the japonica plants, which resulted in enhanced expression of defense-responsive genes. Overexpressing Xa3 with a constitutive strong promoter further enhanced rice resistance due to further increased Xa3 transcripts in both indica and japonica backgrounds, whereas regulating Xa3 with a pathogen-induced weak promoter impaired rice resistance.
منابع مشابه
Small RNAs and Gene Network in a Durable Disease Resistance Gene—Mediated Defense Responses in Rice
Accumulating data have suggested that small RNAs (sRNAs) have important functions in plant responses to pathogen invasion. However, it is largely unknown whether and how sRNAs are involved in the regulation of rice responses to the invasion of Xanthomonas oryzae pv. oryzae (Xoo), which causes bacterial blight, the most devastating bacterial disease of rice worldwide. We performed simultaneous g...
متن کاملOrtholog Alleles at Xa3/Xa26 Locus Confer Conserved Race-Specific Resistance against Xanthomonas oryzae in Rice
The rice disease resistance (R) gene Xa3/Xa26 (having also been named Xa3 and Xa26) against Xanthomonas oryzae pv. oryzae (Xoo), which causes bacterial blight disease, belongs to a multiple gene family clustered in chromosome 11 and is from an AA genome rice cultivar (Oryza sativa L.). This family encodes leucine-rich repeat (LRR) receptor kinase-type proteins. Here, we show that the orthologs ...
متن کاملStudy of Biochemical and Molecular Changes of Iranian Rice Cultivars in Interaction with Bacterial Pathogen Xanthomonas oryzae pv. oryzae Causes Leaf Blight Disease
Rice bacterial blight caused by Xanthamonos oryzae pv. oryzae is one of the most destructive bacterial diseases of rice in some areas of rice cultivation in the world, especially in the tropics of Asia. The low efficiency of disease management methods, especially chemical methods, has led to more research on recognizing resistant cultivars and understanding resistance mechanisms through the stu...
متن کاملExpression of hsp90 Alpha and hsp90 Beta during Xenopus laevis Embryonic Development
Background: Members of the eukaryotic Hsp90 family function as important molecular chaperones in the assembly, folding and activation of cellular signaling in development. Two hsp90 genes, hsp90 alpha and hsp90 beta, have been identified in fish and homeothermic vertebrates but not in poikilothermic vertebrates. In the present study, the expression of hsp90 alpha and hsp90 beta genes in Xenopus...
متن کاملGene Expression Profile Analysis during Mouse Tooth Development
Introduction: Complex molecular pathways involve in development of different tissues such as teeth. Differential gene expression patterns during teeth development generates different tooth types. Teeth development results from interactions between oral epithelium and underlying ectomesenchyme cells with neural crest origin. Teeth development are regulated by different signaling networks. In thi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Genetics
دوره 177 1 شماره
صفحات -
تاریخ انتشار 2007